Acoustic sensing in snapping shrimp dominated environments
نویسنده
چکیده
Snapping shrimp dominate the high frequency soundscape in shallow warm waters. The noises produced by these small creatures are a result of the collapse of cavitation bubbles they produce. During the rapid collapse, the temperatures in the bubble can momentarily reach the surface temperature of the sun, and produce impulsive noise with source levels higher than 190 dB re 1 μPa @ 1m. With millions of snapping shrimp in most warm shallow water environments, the resulting cacophony is heard in the form of a background crackle familiar to many tropical divers. The resulting ambient noise has highly non-Gaussian statistics. What implications does this have on acoustic sensing in these environments? Can signal processing techniques developed with Gaussian noise assumptions be used without significant penalty in these environments? Can these shrimp be used as sources of opportunity for sensing? To begin answering some of these questions, we present a review of some of the research on signal processing in impulsive noise. Snapping shrimp noise is modeled accurately by symmetric α-stable distributions. Optimal signal processing in α-stable noise is often computationally infeasible, but computationally simple near-optimal solutions can be applied with gains up to 5-10 dB. Communicating in environments with snapping shrimp noise has its own challenges. The errors due to the impulsive noise on sub-carriers of a multi-carrier communication system, or the in-phase and quadrature channels of a single carrier system are not independent. If handled inappropriately, forward error correction codes can perform poorly in such systems. However, if the dependence in the errors can be characterized, it can be exploited in the decoding process to get substantial communication performance gains. We show this through an information theoretic analysis of the communication channel with additive symmetric α-stable noise. Finally, we turn to some applications where the snapping shrimp sounds can be used as sources of opportunity. They can serve as “illumination” for ambient noise imaging, where underwater objects can be imaged completely passively. They can also be used as sources for geoacoustic inversion of the surface sediment. We present some results from past experiments to show how sediment sound speed can indeed be inferred by simply listening passively to the cacophony of the shrimp.
منابع مشابه
Snapping Shrimp Dominated Natural Soundscape in Singapore Waters
— Snapping shrimp dominate the high frequency soundscape in the warm shallow waters around Singapore. The noises produced by these small creatures are a result of the collapse of cavitation bubbles they produce. During the rapid collapse, the temperatures in the bubble can momentarily reach the surface temperature of the sun, and produce impulsive noise with source levels higher than 190 dB re ...
متن کاملNear-optimal detection in snapping-shrimp dominated ambient noise
Detection of a known signal in presence of noise is a common requirement in many applications including sonar, ranging, environmental sensing and communications. The optimal detection of signals in noise requires detailed knowledge of the noise statistics. The linear correlator, commonly used in the form of a matched filter, is known to be optimal in the presence of Gaussian noise. However, the...
متن کاملSilent oceans: ocean acidification impoverishes natural soundscapes by altering sound production of the world's noisiest marine invertebrate.
Soundscapes are multidimensional spaces that carry meaningful information for many species about the location and quality of nearby and distant resources. Because soundscapes are the sum of the acoustic signals produced by individual organisms and their interactions, they can be used as a proxy for the condition of whole ecosystems and their occupants. Ocean acidification resulting from anthrop...
متن کاملAmbient noise environments in shallow tropical seas and the implications for acoustic sensing
Oceanographic in-situ measurements are becoming increasingly expensive as remote sensing tools concurrently enjoy a continuing expansion of capability. While in-situ observations will never be replaced completely, the current trend is clearly to make as much use of inferential and remotely-garnered observations as possible. In the ocean, acoustics is one of the foremost tools to use for remote ...
متن کاملThe Curious Acoustic Behavior of Estuarine Snapping Shrimp: Temporal Patterns of Snapping Shrimp Sound in Sub-Tidal Oyster Reef Habitat
Ocean soundscapes convey important sensory information to marine life. Like many mid-to-low latitude coastal areas worldwide, the high-frequency (>1.5 kHz) soundscape of oyster reef habitat within the West Bay Marine Reserve (36°N, 76°W) is dominated by the impulsive, short-duration signals generated by snapping shrimp. Between June 2011 and July 2012, a single hydrophone deployed within West B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010